Non-Mendelian Genetics

By: Lauren Beggs

Agenda 2/25/2013

- Turn in "Make a Baby Lab"
- HW: Quiz corrections, 7.2 Reading KT's and 1 6, Punnett square wkst
- Quest Genetics Part 1: Friday 3/1/2013

Bellringer 2/25/2013

Hudson

Kate Hudson has green eyes. Her father has hazel eyes (brown eyes with green flecks) and her mom has blue eyes.

How can Kate have a trait that is different from both her mom & her dad?

A black male horse is homozygous for black hair (B). This horse is mated with a female who is homozygous for white hair (b). Predict the genotypes and phenotypes of their potential offspring.

X

Genotype sire:		Genotype dam:		

B B

b Bb Bb

b Bb Bb

Predicted F₁ generation:

Genotype: Bb

Phenotype: 100% Black hair

0% White hair

Bb

Bb

Bb

P₁ generation

After 11 months, the foal was born and it's DNA was sequenced. The colt (baby male horse) had a genotype of Bb, but the phenotype was blue roan. How is this possible?

F₁ generation

Codominance

Codominance: Both alleles of a gene are expressed completely. Neither allele is dominant or recessive.

Blue roan: mix of white hairs and black hairs

A male snap dragon is homozygous for red petals (R).

A bee comes along and pollinates a female that is homozygous for white petals (r). Predict the **genotype** and **phenotype** of their offspring.

P₁ generation

Genotype male: _____

Genotype female:

P₁ generation

R

r

r

Rr	Rr
Rr	Rr

Predicted F₁ generation:

Genotype: Rr

Phenotype: 100% Red flowers

0% White flowers

P₁ generation

After a few months the flowers of the snap dragon plant emerged, and all of the flowers were pink.

How is this possible?

F₁ generation

Non-Mendelian Genetics

Incomplete Dominance: A heterozygous phenotype is somewhere between the two homozygous phenotypes.

-Mixing traits together.

*Neither allele is completely dominant/recessive to the other.

Polygenics: 2 or more genes for 1 phenotypic trait

AaBbCc

Skin color is Affected by at least 3 different genes

B= black color ____ gene 1

b= brown color -

E= express pigment (dark dog)
e= no dark pigment (yellow dog)

A yellow male Labrador Retriever has a genotype of bbee and is mated with a black Labrador with a genotype of BbEe. Predict the genotypes and phenotypes of the offspring.

Dad: <u>bbee</u> x mom: <u>BbEe</u>

 b_1e_1 b_1e_2 b_2e_1 b_2e_2

 $B_{1}E_{1}$ $B_{1}e_{2}$ $b_{2}E_{1}$ $b_{2}e_{2}$

Dad: <u>bbee</u> x mom: <u>BbEe</u>

 b_1e_1 b_1e_2 b_2e_1 b_2e_2

B ₁ E ₁	BbEe	BbEe	BbEe	BbEe
B_1e_2	Bbee	Bbee	Bbee	Bbee
b_2E_1	bbEe	bbEe	bbEe	bbEe
b_2e_2	bbee	bbee	bbee	bbee

*All "ee" = yellow

	b ₁ e ₁	b_1e_2	b ₂ e ₁	b ₂ e ₂
B ₁ E ₁	BbEe	BbEe	BbEe	BbEe
B ₁ e ₂	Bbee	Bbee	Bbee	Bbee
b ₂ E ₁	bbEe	bbEe	bbEe	bbEe
b ₂ e ₂	bbee	bbee	bbee	bbee

yellow lab:	chocolate lab:	black lab

	b ₁ e ₁	b_1e_2	b ₂ e ₁	b ₂ e ₂
B ₁ E ₁	BbEe	BbEe	BbEe	BbEe
B ₁ e ₂	Bbee	Bbee	Bbee	Bbee
b ₂ E ₁	bbEe	bbEe	bbEe	bbEe
b ₂ e ₂	bbee	bbee	bbee	bbee

__8__ yellow lab: ___4__ chocolate lab: __4__ black lab